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ABSTRACT

A new adaptive processing algorithm, called Weighted Covariance Estima-
tion (WCE), for the detertion of signals in inteiference of unknown character
is presented. Its main advantage over present techniques, such as Sample
Matrix Inversion (SMI), is its tendency not to suppress desired signals
present in the learning data.

WCE and SMI are compared for a radar problem of practical interest,

adaptive MTI from a moving platform, using both simulated and actual radar

data.
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INTRODUCTION

Adaptive array processing[l] is a powerful technique for detecting known
signals immersed in a Gaussian interference background. The statistics of
Gaussian interference are completely characterized by a covariance matrix
which, together with the signal, determines the optimum receiver structure.

If the covariance matrix is not known, it must be estimated from the available
observations.

The problem of interest here is the adaptive detection of radar returns
from moving targets in the presence of ground clutter and receiver noise. The
radar return from each transmitted signal is received by M sensors and matched- ’
filtered. The resulting outputs are sampled at the Nyquist rate, yielding
complex samples in N range cells from each sensor. One (vector) observation
consists of the M complex samples from a particular range cell. To obtain the
necessary number of independent observations of the interference process, it
is commonly assumed that the interference covariance matrix is the same in
every range cell. The maximum likelihood estimate of the covariance matrix is
then the sample covariance matrix[zl, which is inverted and used to determine
the optimum receiver weighting[3]. This technique has been called Sample
Matrix Inversion (SMI).

This paper proposes a different model for the interference statistics and
derives the maximum likelihood estimate of the interference covariance matrix.
This estimate is more expensive computationally than the sample covariance,
but offers greater immunity to the suppression of desired signals.

The performance of the algorithm is compared with that of SMI using both
simulated data and real data from an airborne MTI radar.

Adaptive Detection

The problem of detecting a (complex) signal in colored Gaussian inter-

ference given K (scalar) complex observations may be stated as follows:

Under hypothesis Ho (no signal present), the observations are of the form




while under hypothesis Hl (signal present) they take the form

Hy: 2, = Bs (@) +n

Here B is an unknown complex number, acknowledging the fact that the
amplitude and phase of the signal are unknown. Any additional unknown param~
eters are contained in the vector argument a. Under the Gaussian assumption,

the interference is completely characterized by its first- and second-order

statistics+

E(nk) = E(nknz) =0
*y = A
E(nng) = Ay,

The detection strategy is based on the generalized likelihood ratio test

max p(z|8,a,H.)
B,a ! H
L(z) = 2 A
p(z|H) H,

It can be shown that the test reduces to

By
max |s (@nrlz| T A (1)
a Hy

*
Thus each observation z is multiplied by a complex weight Wit the resulting

k
complex numbers are summed, and the magnitude of the resultant is compared

with a threshold. The weighting vector w is given by

w=A"s@

+ * denotes the complex conjugate of a scalar and the complex conjugate
transpose of a vector or matrix.




~

where a is the vector of parameter values that maximizes (1).

When some or all of the elements of A are unknown, the test becomes

)

max  p(z[8,a,A ,H

B,a,A 1
bl u

1) = D

Au

where Au denotes the set of unknown elements of A. Evidently, if the number
of (real) unknown parameters exceeds the number of (real) observations, the
observation space cannot be mapped 1:1 into the parameter space. Additional
independent observations are required in order to form meaningful estimates.

In most practical detection problems, the presence of a signal is an
unlikely event. Multiple independent observations under Hl are thus not
available. On the other hand, the interference environment is often statisti-
cally stationary (or quasi-stationary) in time and/or space, so that addi-
tional independent observations under Ho (no signal) are easily obtained. 1In
such cases, it is reasonable to estimate interference statistics assuming that
Ho is true, and use the results to estimate signal parameters.

Specifically, if N independent obserYations Zyr "'EN are available under
Ho, find the maximum likelihood estimate Au of all the unknown statistical

parameters. Given another independent observation 1’ use

2y

)

p(E‘N“'ll BlilAuIH

Br:a_ 1

z
p(_N+1|Au,H°)
as the detection statistic to decide whether or not a signal is present in
Zge1® In reality, of course, any of the En may contain a signal, so the
estimate of the interference statistics is based on all N+l observations, and
used to test each observation for the presence of a signal. The hope is that
the presence of a few signals in the N+1 observations will not seriously per-

turb the estimates of interference statistics.
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The Sample (covariance) Matrix Inversion (SMI) technique[3] is a special

case of this adaptive detection strategy in which the entire interference

covariance matrix is unknown, but assumed constant for all observations.

[2]

Goodman shows that the maximum likelihood estimate of the covariance matrix

is the sample covariance matrix

N N *
Ll P DS
n=1

Z =

and derives the joint characteristic function and probability density of its
N2 real random variables.
This paper proposes an alternative model in which the interference co-

. . th | . .
variance matrix for the n independent observation is of the form

A= 02c (2)
n

, 2
where the variances {Gn, n=l, ..N} and the elements of C are unknown.

This form of the covariance matrix is suggested by the airborne multi-

antenna radar problem. The assumption of a single interference covariance
matrix common to all range cells does not seem appropriate, since clutter
reflectivity often varies significantly from range cell to range cell. However,
some sort of statistical regularity across range cells is needed; otherwise,
there are too many parameters to be estimated.

The derivation of the clutter covariance matrix for this problem is
presented in Appendix A in order to highlight the many assumptions and approxi-
mations which are involved. The result is that the clutter covariance matrix
has the form given in (2). The covariance matrix of interest is actually that
of the interference, which consists of both clutter and thermal noise. This
matrix takes the form

An = oic + ciI
where oz is the thermal noise power per complex sample. The covariance model

used in this paper is valid only if the clutter return is much larger than

thermal noise.




Derivation of ML Covariance Estimate

The joint probability density of N independent vector observations of

interference, each having M complex elements, is

N

) 1 1« 2

PZyreeezy) = Il —rZ— exp 1- 52, C z,
n=l wo lCl o,

The ML estimates maximize this expression, or equivalently its logarithm,

2 1 * -1
% = &n p(z,,..2.) = -MNAnT —lenon -Nen|c| -E:—zgn cz, 3
n

. 2 . . L . .
with respect to {Gn >0, n=1,...N} and the matrix C. This maximization will

. . 2 . .
first be performed with respect to Un , with all other parameters held fixed.

The log likelihood ratio (LLR) can be written as

g = -MNanm -N&n|c| +3¥ &n - éM exp ¢ - ——1'3

Each term in the sum has the form

-ax

ln(xMe ) a,x >0

o=

which has a unique maximum at x = —. Thus

"2 1 * -1
o -2 C 'z
n M ~-n -n

is the ML estimate of onz, if C is known.

Consider next the maximization with respect to the M x M matrix C, with

the onz fixed. Following Goodmanlz], the LLR can be written




2 = constant -N&n|c]| —NTr{C-ls}
*

zZ 2
-nn

where S = %?2: > Goodman's proof can then be applied unchanged to estab-
0n

lish that
cC=s

, . . . . 2
is the maximum likelihood estimate of C, provided the cn are known.
2
In fact, both C and the on are unknown. Consequently, the ML estimates

must be obtained as the simultaneous solution of the equations

~ 1 Zntn
C=s 3= (4)
o]
n
~ [ 2ol
g 2 = 1 Z 1z (5)
n M — -n

In general, the solution must be obtained numerically, by iteration.

Start the iteration by assuming

~ b *
C == Z2 2
o] N -nm

-~ ~

fhgosing the real constant b so that (Co)11 = 1. Invert C° a?d compute the
on according to (5), use these to compute a better estimate Cl, rescale it,
and continue until convergence, as indicated by a sufficiently small change in
the cn2, is obtained. The rescaling is possible because the parameters speci-
fied in the model appear always as products; any one of them may be specified
arbitrarily. This can be seen in the likelihood equations (4), (5) by the
fact that if C,g? constitute a solution, then so also do bC,b_lg?. The solution
can thus be rescaled at any point in the iteration.*

For brevity, this iterative algorithm will be called Weighted Covariance

Estimation (WCE).

* Alternatively, the superfluous parameter could have been specified at the
outset. However, it is felt that this approach results in a somewhat smoother
exposition.




A disadvantage of the algorithm is the large amount of computation re-

quired. At each stage of the iteration, a square matrix whose dimension is

that of the observation vector must be inverted.
When the dimension of the observation is 2, special simplifications

occur, and the solution can be made more explicit.

Special Case : M = 2

After maximization with respect to C, the LLR takes the form

_ 2
2 = constant —Nlnlsl -ﬁz:ln o

In the special case M = 2, the determinant of S can be written

2
Isl = s .8 '|S |2 1 lenll2 Z lznzlz _ Eznlzn;
T P1rt22 P12t T 2 2 2 2
N o] o c
n n n
Let
z |z . |°
g =—n—2- w = i nl >0
n ! n N 2 -
nl g
n
The determinant becomes
2
2 *
Is| = 2w 2w lg [© - [zw g |
2
1 1 7T
=3k Ewalet,l = SwRe
where 2
Ron = & ~Epl (6)
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In terms of the new unknown parameters {wn} the LLR is given by
£ = constant - NzanRw + 2}: inw
- = n

Setting the derivatives with respect to the W equal to zero yields the

set of equations

1
wm(Rg)m =5 Y Rw m=1,...N

*
The solution is clearly independent of the scaling of w. Thus, it suffices

to seek the solution of

wm(Rg)m = 1 m=1,...N (7)
and scale the w's afterward so that
S;p = €y =TXw, =1

Explicit solutions of (7) have been obtained for N < 4.

N = 2: Any two positive numbers.
N = 3: wl:wz:w3 = R23:Rl3:R12

_ o ) 3 . ) 3
N =4d: WpiWaiWaiw, = (RyRouRyg) T (RygR) Ry T (R Ry Ry 4 T (Ry Ry 3Ry 5)

For N > 5, analytic solution becomes prohibitively complicated, and an
iterative solution is again required. Assume initially that all the w's are
equal to N-1 and solve equation (7) iteratively.

1

wm(n+l) = TEET;TE; m=1,...N (8)

* In the case N=2, these equations degenerate into identities.

the LLR is independent of the w's.
equally well.

In this case,
Any two numbers summing to 1 will serve




Renormalize after each iteration so that Zwm = 1, and continue until con-

vergence is obtained.
Once the w's have been determined, the ML estimate of the matrix C can bhe

computed.

6 =8 = (9)

This algorithm is considerably simpler than the one for general M because
the weights are determined iteratively from the observations, without matrix

inversion, and the normalized covariance estimate C need be computed only

once.

Outlier Rejection Property

The special form taken by the likelihood equations for M = 2 makes possi-
ble an interesting heuristic explanation of the "outlier rejection" property
of the WCE algorithm. This behavior explains its relative immunity to corrup-
tion by desired signals hidden in the interference.

The mechanism for outlier rejection lies in the iteration (8) for the
weights., Suppose that the ratios En are all nearly the same, except for Ek'
and that the iteration begins with uniform weights w, = 1/N. The elements of
the kth row and column of the matrix R defined by (6) will be much larger than
the other elements. This will cause the kth element of the vector Rw to be
much larger than its other elements. The kth weight for the next iteration is
the reciprocal of this element and so is much smaller than the other weights.

The outlier has thus been deweighted.
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The presence of a signal in a particular one of the observations causes
the ratio for that observation to differ from those of other observations
containing no signal. This observation then contributes little to the est’-
mate of the covariance matrix. When this cell is processed for detection
using the estimated covariance, improved detection probability results.

‘ﬂ If all observations are assumed to be statistically identical, there is
clearly no reason to treat one differently from any other. Removal of the
assumption allows this possibility. The fact that it results in greater
immunity to desired signal suppression is entirely fortuitous, however, since
no mention of such signals was made in the model. It may be possible to
introduce the occasional presence of signals into the model in a statistical
fashion and obtain an algorithm with even better performance.

:2_' It is conjectured that the algorithm has similar immunity for any value
j ' of M. However, no plausibility argument has been found, and no simulation or
: experimental results are available.

Convergence

3 The iterative procedure has been programmed for the special case M = 2

and no problems with convergence have been encountered. However, convergence
has not been proven theoretically.
If the statistical model proposed here is valid, WCE will improve upon
i SMI in the sense of producing a larger value of the generalized likelihood

ratio. The initial covariance estimate used to start the iteration is the SMI
estimate, and each subsequent iteration step increases (or at least does not

E . decrease) the likelihood ratio. This is not inconsistent, since SMI is based

; on a simpler model. The real issue is whether or not the WCE model is a

better representation of the physical situation for the particular problem of

interest.

Accuracy of the Estimator *

As the WCE estimator itself is defined only implicitly, no direct analyti-
cal assessment of its accuracy seems possible. One can, however, evaluate the

Cramer-Rao bound on the joint covariance matrix of the estimation errors in

10




all the unknown parameters. This provides a lower bound for the covariance
matrix of any unbiased estimate. If any estimate achieves this lower bound,
it is the maximum likelihood estimate (WCE). Also, the ML estimate is asymp-
totically efficient; that is, it approaches the bound asymptotically as the

number of observations becomes large.

- The calculation of the Fisher information matrix J is outlined in Appen-
dix B for the case M = 2. The simplest result is obtained by representing
R the unknown covariance matrix C in the form*
1 grej¢
C = (10)
gre )¢ g°

The errors of primary interest are those in r and g, which turn out to be

uncorrelated. Their variances are bounded by

2 2
2 (1-x")
o 2 N (1)
2 2
g 2,9 (1-r) (12)

g - 2N

Note that the estimates are (potentially) much more accurate when the magni-
tude of the correlation coefficient r is near unity.

It can be shown that the Cramer~Rao bounds on the errors in estimating
¢, r, g in the constant covariance case (SMI) are exactly the same as those
just presented for WCE. This means that the fluctuations in scale of the
. covariance matrix do not, in principle, affect the accuracy with which the

elements of the constant part can be estimated.

*
The ML estimates of these parameters are
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Airborne MTI

Up to this point, the development of the WCE algorithm has been kept
as general as possible. It will subsequently be evaluated and compared with
SMI for a problem of particular interest, radar detection of slowly moving
ground targets from a moving aircraft, using both simulated and real radar
data. This section discusses this problem in some detail.

The motion of the radar beam causes ground clutter returns to have a
doppler frequency shift which depends on their position within the beam.

If the radar antenna beam is fairly broad in azimuth, ground clutter returns
from some part of the beam will have the same doppler frequency as the target
returns of interest, so that conventional doppler processing of returns from a
single antenna cannot separate targets from clutter.

One solution is to add a second antenna displaced from the first along
the direction of motion of the platform, so that the two antennas occupy the
same position in space (or nearly so) at different times. Pulses transmitted
at these times yield nearly identical (i.e., highly correlated) returns from
stationary objects, while returns from moving objects differ because of the
motion. Subtraction of the returns received by the two antennas thus elimin-
ates most of the ground clutter, leaving only returns from the moving objects.

For simplicity, only processing of pairs of returns, one from each an-
tenna, in multiple range cells was simulated. The covariance matrix of a pair

of returns from the nth range cell is shown in Appendix A to be of the form

The signal to be detected is of the form

E_* = B { l, e-j¢}
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where B is an arbitrary complex amplitude. An optimum processor for detecting

*
this signal computes I!.EJ and compares it to a threshold, where

w = A-ls = C‘ls. Thus
v n3 5
. 3
o o €22 ~12®
wi) = An s(¢) = C "s(¢) =
- * i
C12 + e

It is convenient and causes no degradation to scale the weighting vector

so that w1 =1,
* j¢ _ 2
Cia*e 1 Chom1C4,!
w.($) = — = - 1 - 22 12 (13)
2 c..-c, el? €12 c..—c..e?
22712 22"%12

*
and detection is based on ,zl + wzzzl. If the clutter is highly correlated

i

22—C12e is not too small, i.e., if the signal is

(c,, - lc1212<<1) and if C

2
sufficiently different in doppler from the clutter, then

&
he

- Cl. (14)
12
This means that the optimum weighting (13) which depends on the unknown
signal phase ¢, can be approximated by one which depends only on the statistics
of the clutter, not on the nature of the desired signal.

The output signal-to-interference ratio (SIR) of a linear processor with

weighting vector w is

it i




For the optimum choice of w, the output SIR is

o w1 [g]2 1+ Cyy -2Re(C e
p=sh's =" E

%n ¢,y -leyg,

2
The quantity IBl /on2 is the input SIR (on antenna 1), so the improvement

in SIR provided by the optimum processor is

_ 3¢ _ jey2
i 1+ C,, -2Re(C ,e”") i [1 c, e | -

p) 2
Ca2 '[clz' €2 -|C12|

Iopt

This shows that the SIR improvement is quite large when the clutter is
. 2 L : X
highly correlated (sz -lclzl <<1). A similar calculation for the approxi-
mately optimum, Doppler-independent processor shows that its SIR improvement

is

a negligible difference in performance when Io is large.

pt
The cancellation ratio is defined to be the ratio of input to output

interference powers of the canceller.

2 2
AN

r
*
E |wzl?
2
The presence of lwl| in the numerator is equivalent to normalizing the

weights so that w, = 1.

For the optimum processor

Topt
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which is a (weak) function of the Doppler phase, while for the approximate

2
- lc.,l

r = "’lz""Ti (15)
—lclzl

processor

independent of Doppler.

Simulation Results

The WCE algorithm was compared with SMI using simulated data. The basis
of comparison was the cancellation ratio (15).

Simulated data were generated in 40 range cells. The power levels (i.e.,
the 0n2) in the cells were determined by selecting at random 40 numbers be-~
tween 20 and 50 dB. The results are shown in Table I. For each range cell,
thirty~-two independent pairs of complex Gaussian random numbers having the

covariance matrix

(9]
t

1-10° 1

were then generated and scaled to the appropriate power level.

The SMI algorithm estimated Cl2

using the first 10 range cells and used

the result to compute zq -C12 z, in all 40 cells. The input and output inter-~
2 2 =1
1| and [zl —C12

over the 32 independent trials, and the results used to compute an empirical

ference powers, lz z2|2, in each of the 40 cells were averaged
cancellation ratio for each cell. These ratios were plotted as functions of
the input interference power.

The entire process was repeated using the adaptive algorithm proposed in
this paper on the same data set.

Figure 1 shows the cancellation ratios produced from the data by the ap-
proximately optimum, nonadaptive processor (14) which knows a priori the
interference statistics. The empirical cancellation ratios are clustered
about the theoretical value of 47 dB. This performance represents an upper

bound for the adaptive techniques.

15
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The same data processed by the SMI adaptive algorithm using 10 cells
produced the results shown in Figure 2. The cancellation has been reduced by
about 3 dB by the adaptivity. Note, however, that cancellation was consider-
ably improved in one range cell. This is range cell 6, which was one of the
cells used to estimate the covariance, and has the largest power level of
these 10 cells. It tends to dominate the SMI estimate, which weights the 10
cells equally.

Figure 3 shows the corresponding result for the WCE algorithm, also
adapting on the first 10 range cells. There is virtually no degradation due
to adaptation. 1In view of the increased computation required, however, this
modest increase in performance is not deemed significant. The real advantage
is revealed when signals are present in the learning sample.

To this end, :the data were modified by the addition of a simulated
target having ¢ = T and adjustable amplitude to range cell 5.

Figures 4 a,b show the effect on the cancellation performance of the SMI
and WCE algorithms, respectively, of a 20 dB signal present in cell 5. The
interference power in cell 5 is 38.7 dB, so the SIR is ~18.7 dB. SMI per-
formance has degyraded by 15 dB, while that of WCE is unaffected (the isolated
point is that for cell 5).

Table II lists the weights assigned to the 10 learning cells on each of
the 32 independent trials by WCE. Cell 5 is consistently deweighted by 30 or
40 dB relative to the other cells, It is therefore not surprising that the
presence of the signal has little effect on the covariance estimate.

The computations were repeated for a variety of signal levels, and again
using only the first 5 range cells for adaptation. The results are summarized
in Figure 5. WCE performance is not affected by the presence of a signal, no

matter how strong. SMI performance degrades at the rate of about 0.9 dB in
cancellation for each additional 1 4B of signal.

The performance of the WCE algorithm begins to degrade when targets are
present in half of the range cells used for covariance estimation. As the

number of targets increases beyond this point, WCE and SMI are both degraded
by about the same amount.
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Experimental Results

The simulation compared the performance of WCE and SMI estimators using
data which obeyed the WCE statistical model. It was to be expected, therefore,
that the WCE estimates would be better. In fact, the iteration which leads to
the WCE estimate can always be started with the SMI estimate, and subsequent
iterations can only increase the likelihood ratio.

The most important advantage of WCE, as revealed by simulation, is its
tendency not to suppress desired signals present in the learning sample. It
is important to see whether or not this advantage is maintained when using
real data which does not precisely match either the WCE or SMI statistical
models. For this reason, the two algorithms were compared using real data
from an airborne L-band MTI radar having two antennas. Data processing
consists of adaptive cancellation of each pair of pulses (one from each an-
tenna) followed by Doppler ::xltering via a 32 point FFT, on each of 40 range
cells.

In most cases. the two algorithms perform equally well. However, in the
example to be presented here, a moving target in range cell 15 (S/C = -12 dB)
causes a significant difference in performance. The cancellation obtained
with WCE using range cells 11--20 for covariance estimation is shown in Fig. 6.
It is limited by the thermal noise power level PN' If clutter is cancelled

well below the residual noise level, the expected cancellation ratio is

E|z, |2
r:———-——l—-—-—z
2
E|z -wz,|

|

2P

-

since |W|= 1, so that

r(dB) = PI(dB)-PN(dB)-3
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The cancellation ratios should thus form a straight line with a slope of 1
when plotted against the interference power PI (dB) . This behavior can be seen
in the data. The Doppler-filtered canceller output is shown in Fig. 7.

The results produced by SMI using this data are shown in Figs. 8, 9.
Cancellation is degraded by about 9 dB. The flatness of the curve indicates
that thermal noise is no longer the limiting factor. The Dopplgr-filtered
residues show that the detectability_of small moving targets has been reduced
considerably. The difference in performance would probably be much greater

were it not for the limit imposed on WCE by thermal noise.

SUMMARY

An algorithm for generating a maximum likelihood estimate of the covari-
ance matrix of a vector process, using multiple observations, has been de-
veloped. It is based on the assumption that the covariance matrices of the
observations are the same except for a scale factor. The resulting estimate
is a generalization of the sample covariance matrix in that it is a weighted
average of the sample covariance matrices of the individual observations. The

4weights are computed via an iterative procedure.

Simulation results show that the adaptive "optimum" filter based on the
weighted estimate offers some improvement in interference rejection compared
to that based on the sample matrix estimate. The main advantage of the weighted
covariance estimate, however, is that it has far greater immunity to errors
caused by the presence of desired signals in the observations used for covari-
ance estimation. It is therefore valuable in situations where target-free
interference observations cannot be guaranteed.

The major disadvantage of the technique is the large amount of computa-
tion required. It is best suited to problems in which the dimension of the

vector observations is small.
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APPENDIX A

Derivation of Clutter Covariance Matrix for
Multiple Antenna Airborne Radar

Consider an airborne radar having M antennas with phase centers located
at positions md with respect to some common reference point, moving with
constant velocity vector v. Let R <be a vector from the reference point to an
incremental clutter patch at coordinates r,9 at t = 0. The range vector from

the mth antenna to this patch at any time t is then (Fig. al)
R (t) = R -md -tv
T - = =

For md and tv sufficiently small, its length is approximately

R (t) = R
m

1 A .
T E; md + tR .v) = Ro -md + Rot (Al)

R
—~ = o

(

Note that Ro'd and éo are all functions of r and 8.
Let a(r,8) denote the complex amplitude of the return from the clutter

patch at (r,0), and Gm(r,e), the complex gain of the mth antenna in that

th . .
direction. Assume that the m antenna transmits a pulse at time tm.
s (t) = t-t j t
m( ) Re{u( m) exp(JZWfo )}

It is assumed that only the transmitting antenna receives the resulting
returns, and that all returns are received before the next transmission from
any other antenna occurs., With these assumptions, the total clutter return

. th . *
received by the m  antenna is

2 .
rm(t) = Re %‘[/;Gm u(t-tm-r(t)) exp % ]21rf°(t-1'(t))$ drdei (p2)

where t(t) is the delay suffered by an incremental element of return received

4 . . .
at time t( ]. The behavior of 1(t) can be quite complicated, in general, but

*
The (r,8) dependence of a, Gm' and t(t) has been suppressed for brevity,
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using the linear approximation (Al) it can be shown that T(t) is adequately

approximated by

R
-0 - 2 . _ .
i & " |® T(t) 2 C(Ro md + Rot) = Tm + 'rot
& °
where d = ER'E‘.' éo = ep'y. Using this and neglecting the effect of time

compression on the complex modulation u(t), equation (A2) reduces to

2 _ . n
rm(t) = Re {,[/;Gm u(t:-t:m —-rm) exp {jZﬂfo(t-Tm"Tot)} drde} |

This return is passed through a filter matched to the transmitted pulse shape,

|
= yielding !
, |

i

A . ) . |
£ Cm(t) = jrm(r) Re{u(1~t) exp {Jznfot}}dt |

‘ | =1 Re an x(t-t -1t _,f.) exp {j2nf _(t +1 )} : ?

2 m m m'd dm m P

: B
A" - N i
: ! exp { 321rform} drds exp {Janot} E

where the Doppler frequency £, = —fo{-o and T are functions of (r,8) and

d

- x{t,£) g./’\.I(T)\.l*('t~-1:)exp{j21n‘:"c]d'r

is the ambiguity function of the radar pulse (see [4], p. 70). The complex
° *
modulation is sampled at time tm + 17, yielding the complex clutter sample
: 2 . . R
Cn —./:/-aGm x(t Tm,fd) exp{321tfd(tm + Tm)} exp{ ]21rf°'rm}drde
®
The factor 1/2 has been absorbed into a.
»
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It is now assumed that the maximum Doppler frequency of the clutter is much

less than the bandwidth B of the radar pulse, making possible the approximation

x(e,£9) & x(t,0)

The covariance of any pair of clutter samples is then given by

* 2 x2 . o * o
E(CC) = fPGmGn X(t=1,0) X (t"-7 ,0) (n3)

exp {32nfd(tm-tn)} exp {-JZn(fo-fd)(Tm-rn)}drde

It will be assumed that the transit time across the antenna configuration

(max Tm-rn) is much less than the reciprocal of the radar bandwidth; the first
m'n
argument of both ambiguity functions in (A3) can then be replaced by t‘-ro.

Their product then becomes Ix(r'-r,O)lz. This is the envelope (squared) of
the compressed radar pulse and is an impulse-like function of 1 and therefore
of r. The remainder of the integrand varies very slowly with r compared to
|x]2, so the r integration merely produces a constant (f|x|2dr) which can be

absorbed into P. Since it was already assumed that f _<<B, the last approxi-

4
mation also implies that fd(Tm—tn) << 1, so that this phase term may be
neglected. Thus

2

* 2 * .
E(Can) —./'}?(G)Gm(e)Gn (8) exp{3217[fd(tm—tn)—fo(l'm-'rn)]} de

where P, G, £_, and Tm-Tn are all implicitly functions of the sampling range

d
R = E%— + Their variation with range is very slow, however, except for P. If

the clutter samples are confined to a range interval which is small compared -
to the range, and if the clutter power distribution is the same in each range
cell except for a scale factor, i.e., if

P(R",8) = F(R")Q(6)
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then the covariance matrix of the clutter samples from a given range cell is

i simply a constant matrix multiplied by a scale factor which is a function of ,
_; range. |

Making the substitutions

the covariance element becomes

r * B . 2 *2
L E(C, C) = F(R )fQ(e)c;m(e)Gn

3} (a4)

The effective phase center location is defined to be the position of the

a2
(0) exp{j21rx (m-n) (g_R vA + e g)} as

mth antenna at the time it transmits. If adjacent antennas transmit in sequence,
T the vector motion of the effective phase center between transmissions is then

;%i d + vA. If the vectors d and v are collinear, this motion can be made zero by
:f ! propexr choice of A. If the antenna patterns are identical (Gm = Gn), perfect
clutter correlation is obtained. More generally, if the antenna patterns are
real, as is usually the case, maximum correlation is obtained by choosing A to

- minimize the projection of d + vA on the line of sight ep at beam center. ]
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APPENDIX B

Outline of Derivation of Information Matrix

The elements of the Fisher information matrix are

J.. = B {=22 2,
ij da, 3da.
1 3
where £ is the likelihood ratio (3) and the ai's are the unknown parameters.
The constant part of the covariance matrix C is parametrized as in(10).

Let x denote any one of these real parameters. Then

31 _ 2__ *-l3c

i | | ax 3x El’l (B1)
5;_ It will be convenient to define
} T =1—C_lz
2n ¢ =
k- n
[3, ! These are complex Gaussian random vectors with covariance C-l. Using the
} 5
:é : relation[ ]
i
kN
| -
'z ale| _ lc|retc 2 y
X ax ox
and replacing z, by En’ expression (Bl) can be written
L _ * 3C -1 3¢
x 2;(511 ox & TTF (C ax)
- Note that
‘ * 3C * BC - -1 aC
E(L, 35 &) = Tr{E(C } Tr(C © =) (B2)
so that
L
E(Bx 0
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Let y denote any one of the parameters of C. Then

9% 3R\ _ * 3C -1 3C, | *3c -1 3¢
E( )-Ezn; (z, g, - TX(CT ) §(£m3y£m Tr (C ay))

3 *3C, *3C, -1 3¢, -1 3C
—? [E( s Enln By S’ TE(CT 5 ITe(C T 5 (B3)

The following general result is useful in evaluating the above expression.
Let A, B denote arbitrary square matrices and let z be a circular complex
Gaussian vector with zero mean and covariance A. Then
* *

*
E(z Az z Bz) = E(IIA, .z z.)(IIB
iy I ke

*
k2 ZK2g)

* *
= FIIL A, .B E(z.2.2 . 2.)
ke ij k& i"37k"L

[6]

The expectation can be evaluated using Reed's results

TILZ A, .B. (A, A .+ A A.)
ijka ij ke 3i Rk L1 3k

(?;A.jAji)(ZZB ALY + EZ(ZAi.A. )(ZBklAzi)

ij kg KUK ix § ¥ 9%
= Tr(AA)Tr (AB) + Tr (AAAB) (B4)
Use of this result in (B3) results in
aL AL - -1 3C -1 3cC,
E(ax ay) = N Tr(cC 3% Cc ay) (BS)
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]
-
‘ f The other parameters anz can be treated in a similar fashion., Using (3)
3 for the case M = 2,
3 * -1
3 o 2 s 2 632 2 2nCEn
A o n n n
J,i’
¥ Again note that
3L _ 1 * _
E( 2) = —2(E(_t;_nC_c_n) 2)
30 o]
n n
& = —1—2- (rr(ccHy-2) = 0
. (o)
n
;‘“ The elements of the information matrix corresponding to the onz are
3L L. _ 1 * *
3 E(— 3 = —5 3 Bl(g cg -2) (g, cg -2)}
b4, | a0 30 c_ g
¥ m n m n
1§
2. 2]
=M pcter ier) -4]
4 2nCeninCln
n
k. Use of (B4) results in
F AL AL Smn -1_-1 -1 -1 ’
E( ) = (Tr(C "CcC "C) + Tr(C "C)Tr(C "C)-4]
. 2 2 4
i 90 ) o]
ey m n n
»
2
= ;—7 6mn (B6)

., n
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{ Finally, for the cross terms

¥ 3L 3% *3C oo .-l 3C 1 % i
‘ E(ax 2) E {Z(Sm % “m Tr(C ax)) 2 (angn-2)} j
3g m g
“ n n E
j - 1 [ * 3C * * 3C
Ry - o 2 E(En ax -ETrEnCSn) ZE(En 9x 511)]
? n L R
7 7
1 -
1; 1 -1 3C -1 -1 -1 3¢, _ -1 3C.
; = U 3 Tr(C % C °C) + Tr(C C)Tr(C ax) 2 Tr(C ax)]
1 a L
-4 1 -1 3C
= —3 Tr(C ax) (B7) i
g [
2 n
Evaluation of (B5), (B6), (B7) yields the information matrix J. If the ]
vector of unknown parameters is ordered

T 2 2 3
a = (¢.r,g.ol. eee Oy )

the result is
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™ bNe? 0 0 | 0 o |
sz(1+ 2 -1 | -2 -2
r ) ~bNrg l -bro1 -brcN
bNg-z (2_r2) l g-1612 g-lo;z
T =2 | = e e o e e o - — e - — - o .
-4
I E
AN
| N,
| \
| \
symmetric | \
\
{ \-4
8 { N

where b = (1 -rz)-l.

The phase estimation error is seen to be independent of all the other esti-

mation errors. Its variance is bounded by




g
3
s
The remaining portion of J can be written as
a ! B
J° = 2D ——|— D (B8)
3 B I
ﬁ ‘
) . . . -1 -2
! where D is diagonal with d, =k d,=9", {dkk =0, 5+ k=3, ..N+ 2},
1+r2 -r
o Boxa =N 2
x - 2-r
l-rz
? ~r -r e s e -r
i BZxN =
3 1 1l e e e 1 i
L i
o and I is the NxN identity matrix. Application of the formula for the inverse ;|
i i of a partitioned matrix to (B8) yields
1| ]
1 (A -BB") I -alegt
: - - | -
(3%) l=%nl ——— s pt (B9)
-1 T -1 -1
E. -Q "B'A | Qo
- '
where i
. o=1-"a"'s
v H
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